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THE FREQUENCY RESPONSE OF HOT-WIRE 
ANEMOMETER SENSORS TO HEATING 

CURRENT FLUCTUATIONS 

K. BREMHORST,* L. KREBS~ and D. B. GILMORE~ 

(Received 26 April 1976 and in revised form 16 July 1976) 

Abstract-Frequency response me~urements by the current injection technique of hot-wire anemometer at 
very Iow overheat ratios, show that for wires with substantial end conduction losses, a single time constant 
system response is not obtained. This is contrary to currently used theoretical models. A new model is 
presented which successfully simulates the measured frequency response characteristics. It is concluded that 
the traditional assumption of constancy of temperature at the wire ends under dynamic conditions is 
incorrect. Hot-wires with negligible end conduction losses were found to give the anticipated single time 

constant system response. 

NOMEN~~TURE 

A, cross-sectional area of hot-wire; 

a, constant in equation (8a); 

Cl, heat capacity of hot-wire; 
CZ, C&.tmped heat capacity of transition region 

and-bulk of wire attachment respectively; 
wire diameter; 
20 log,, (output/output at reference 
condition); 
a function defined by equation (7); 
instantaneous convection heat-transfer 
coefficient; 
mean convection heat-transfer coefficient; 
fluctuation from the mean convection 
heat-transfer coefficient, = h - h; 

instantaneous wire current; 
mean wire current; 
fluctuation from mean wire current, 
=1-I; 

J-L; 
constant defined by equation (8b) 
thermal conductivity of hot-wire material; 
length of hot-wire; 
parameter defined by equation (4); 
parameter defined by equation (4); 
heat generated by hot-wire; 
heat transfer by convection; 
heat transfer by conduction; 

q1 or q2, heat flow along branches shown in 
in Fig. 3; 

R total resistance to heat transfer; 

&,Y &2? resistance to heat transfer by conduction 
from one body to another; 

R-1, Re2, equivalent resistance defined as part 
of Fig. 4; 

RE, mean wire resistance at the equilibrium 
temperature for zero heating current; 
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total wire resistance; 
fluctuation of total wire resistance; 
instantaneous wire resistivity at equilibrium 
temperature, Tz; 
mean wire resistivity at equilibrium 
temperature, TE; 

rE--FE; 

wire resistivity at a reference temperature; 
instantaneous wire resistivity at wire 
temperature; 
mean wire resistivity at wire temperature; 

r,--r,; 
=jw; 
wire equilibrium temperature at zero 
heating current-at low subsonic speeds this 
is virtually identical to the fluid temperature; 

T,, T2, T3, effective temperature of wire, 

transition region and bulk of end supports or 
plated section of wire respectively; 

t, time; 

x, co-ordinate along the wire, x = 0 being the 
centre of the wire; 

z,z,,z2, impedances. 

Greek symbols 

temperature coefficient of resistivity ; 
absolute magnitude of perturbation in the 
convective heat transfer coefficient; 
damping coefficient in equation @a); 
absolute magnitude of ~rturbation in r,; 

=3.1416; 
absolute magnitude of wire current 
perturbation; 
time constants of wire and transition 
region respectively; 
phase angle; 
parameter defined by equation (4); 
angular frequency ; 
characteristic or natural angular frequency; 
corner (roll-off) frequency of wire and 
transition region respectively. 
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1. INTRODUCTION 

THE RESPONSE characteristics of the small cylindrical 

element which is the heart of hot-wire anemometers, are 
amongst the most difficult to measure directly. Con- 
sequently even now, a full understanding of these 
characteristics cannot be claimed. Many of the more 
dominant ones are well documented in the literature 

such as Hinze [l] and Bradshaw [2]. 

Studies of the response characteristics generally 
commence with the partial differential heat balance 

equation which accounts for convection, conduction 
and storage of heat, radiation and thermoelectric 
effects being negligible. No evidence appears to in- 
validate this basic equation. The next step involves the 

selection of boundary conditions with which a solution 

either in closed form or by numerical methods can be 
obtained. The most generally used boundary con- 

dition is that the temperature of the wire ends equals 
that of its supports which in turn equals the wire 

equilibrium temperature at zero heating current which 

is often equal to the stream temperature. Some exper- 
imental evidence has been provided by Champagne 
et u/. [3] showing that under some conditions, the 
temperature of the wire ends is above that of the stream 

and that of the major part of its supports. For the 
assessment of the fluctuating wire response, it is also 

assumed that the temperature of the wire ends remains 
constant. This assumption follows from the fact that 
the supports are massive compared with the wire. 
Solutions for these boundary conditions are presented 
in Kronauer [4] and Hinze [l] and show that even 
when significant conduction of heat to the end sup- 
ports takes place, the frequency response of the wire is 
that of a single time constant system-a single pole- 

except at high wire temperatures where the wire 
response approaches that of a distributed system due 

to the high temperature gradient along the wire. The 
resultant deviations from a single time constant system 
are, however, small and before the development of 
closed loop hot-wire anemometer systems, was con- 

sidered insufficient to warrant the use of open loop 
compensation networks more complex than a single 
zero. Direct experimental evidence of this behaviour is 
provided by Kidron [5] for a tungsten wire operated at 
a high wire temperature and low velocity. 

Although the majority of hot-wire anemometer 
systems are now of the closed loop form which keep the 
mean wire temperature constant regardless of velocity, 
and hence no longer require the operator to measure 
the wire time constant, the frequency response charac- 
teristic to heating current fluctuations is still of interest 
for design purposes. It is also of vital importance in the 
measurement of stream temperature fluctuations when 
using constant current hot-wire anemometers. In this 
application, the frequency range of the measured 
quantity generally exceeds that of the transducer thus 
requiring the use of open loop compensation. Match- 
ing of the compensation network zero to the pole 
representing the wire is generally achieved by the 
square wave current injection technique pioneered by 
Kovasznay [6]. This method is relatively insensitive to 

errors and consequently gives an apparently good 
match. Recent attempts by the authors to do this with 
a sinusoid instead of a square wave showed that, for 
commonly used hot wires even at extremely low 
overheat ratios where the wire is no longer a distri- 
buted system within achievable measurement ac- 
curacy, a zero will not match the “pole” representing 

the hot wire. A re-examination of the heat-transfer 

characteristics of the wire shows that the assumption 
of constant temperature for the wire ends leads to this 

dilemma. 

2. THEORETICAL RESPONSE WITH WIRE 

ENDS AT CONSTANT TEMPERATURE 

The partial differential equation expressing the 
instantaneous heat balance at any point along the wire 
is given by equation (1) where for the operating 

conditions of interest in the present work, thermal 
radiation, thermoelectric effects and variations in wire 

thermal conductivity have been neglected. 

12r, C,A ar, 
I 

h7td(r, - rE) k,A d*r, 
-~__ 

A rocl dt roa roc( &x2 
(1) 

where rw is a function of x and t but only the case of h 
= constant along the wire is of interest. Considering 
the small perturbation response, time dependent com- 
ponents can be replaced by a mean component and a 
fluctuating one as follows 

I=7+I’ 

r, = r, +rk 
(2) 

rE = rE 4- rk 

h=h+h’ 

where I’, rk and h’ are functions of time only but rk is a 

function of x and time. r; is a function of x alone. 
Collecting first order terms gives the small per- 
turbation response equation, 

7*rk 2EI’ C, A ar; 
A+A=Et+ 

h’nd(?, - PJ 

0 you 

+ 
hnd(rk - r(E) k, A a2r; 

-__~ (3) 
you rocl ax2 . 

When h varies with time and rE and I are constant, let 
h’/h = y sin wt and introducing the following non- 
dimensional groups 

Ahnd 
p*=_- 

L2T2r ci 

I’r,ct 
1; Q2=2 

k,A* (4) 

co&A2 
a=- 

P*l*r u 0 

the solution to equation (3) is given in exact as well as 
in symbolic form by Kronauer [4] for the boundary 
condition rL = 0 at x = k L/2. Symbolically, 

-l+P2 
R:, = -yR,-- p4 Fsin (0X-4) (5) 
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where Rk is the resultant lluctuation in wire resistance 
integrated over the length of the wire and F is a 
function of a and the product PQ. F and (f, contain the 
frequency dependence of RW and it is easily shown for 
commonly used wires at low overheat ratios that a 
single pole system results to an accuracy of better than 

5%. 
The response to stream temperature fluctuations is 

obtained by setting I’ and h’ equal to zero and taking 
& = ‘1 sin wt. Applying the boundary condition r: = 0 
at x = &L/2 results in a solution of equation (3) in 
symbolic form, 

(6) 

For a wire sensitive only to temperature ~uctuations, 7 
is usually kept very low and d is small so that generally 
PQ > 1. Kronauer [4] shows that for PQ > 20, F and 
4 are given to within 2.8% and 1.1” respectively by 
equations (7) 

F= 1-L ( ‘“)I1 +(~+~PQ~~]"' 

(7) 

4=tan-’ * 
l+ G'f'Q). 

Thus the response of the wire is again that of a single 
pole to within measurable accuracy. 

3. APPLICATION OF THEORETICAL RESULTS 

TO A WIRE WlTH ENDS AT 

CONSTANT TEMPERATURE 

The solutions given in the previous section all 
indicate that the wire responds like a single time 
constant system. At high overheat ratios several 
doubts arise when using these solutions as h becomes 
temperature dependent and, therefore, will vary along 
the wire. Also, in view of the experimental evidence of 
Champagne et al. [3] the ends of the wirecan no longer 
be assumed to be at the temperature of the fluid. 

It is better, therefore, to concentrate on the response 
at low wire currents when the wire is operated 
essentially as a resistance thermometer. In thiscase the 
solutions of the previous section show that to an 
accuracy of better than l%, the wire can be represented 
by a single pole system, Precise measurements to verify 
this do not appear to have been reported to date. 

Measurements with a DISA 55M20 constant cur- 
rent bridge incorporating probe cable compensation 
(DISA 9055 M2381) and employing the set-up pro- 
cedure as described by Bremhorst and Krebs [S] gave 
the result of Fig. 1 for a 5 urn dia. x 1.5 mm tungsten 
wire at a very low overheat ratio. The wire was 
soldered directly to its supports which were massive 
compared with the wires-certainly more massive 
than commercially produced ones. Significant differ- 
ences which cannot be explained by experimental error 
are noted between this and a single pole system. At the 
45” phase lag point the amplitude difference would give 
an error of 35% in spectral measurements. 
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FIG. 1. Frequency response of 5 pm x 1.5 mm tungsten wire, 
for air velocity = 2.3 m/s, wire current = 8 mA and constant 

size test signal. 

Finally, the wire’s response to current fluctuations of 4. REEXAMINATION OF THEORETICAL MODEL 

the form I’/7 = r sin ot when h’ and rb are zero is given The assumptions used in the derivation of the basic 
by the sum of the responses to velocity and tempera- heat transfer equation, equation (l), and its per- 
ture fluctuations, that is, the sum of equations (5) and turbation form, equation (31, are considered valid and 
(6) but with y = -27/(1 +P*).and q = 2?&/(1 +P*). are consistent with, for example, Davies and Davis [7]. 
For a wire operated at low 7, as is the case when However, the form of the measured response of Fig. 1 
measuring temperature fluctuations, P2 >> 1 so that suggests the interaction of two single pole systems 
the response is closely approximated by that to where the second time constant can be attributed to a 
temperature fluctuations, that is, by equations (6) and portion of the supports holding the wire. The new 
(7) with the above substitution for q. Again it is a single physical model of Fig. 2 is proposed. 
pole system response. The essential difference between this and previously 
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used models is that a small transition region has been 
included where considerable crowding of the heat flux 
lines takes place. This section is not assumed to be at 
constant temperature. Figure 3 shows this new model 
as a lumped parameter network equivalent circuit for 
constant fluid temperature, T,. 

Ncte: q2=qk, of Fig. 2 

FIG, 3. Lumped parameter network equivalent circuit of new 
hot-wire model for TE = constant. 

The end supports of the wire have a considerable 
thermal inertia so that TJ will be essentially constant. 
Also, R,, will be very small due to the high con- 
ductivity and large cross-section of the end supports so 
that a reasonable assumption for most cases of interest 
is that Ts = TE giving the simplified model of Fig. 4, 
where 

R,, R 
z, =- 

T,SCl 
and Z, =L 

t$+l 

and 

s=jo. 

For current injection, the ratio Ti/q is of interest as 
this gives the system transfer function measured when 
observing the signat from the hot-wire unit and 
comparing it with the forcing function, q. This ratio is 
the impedance, Z, of the network of Fig. 4 and has the 
form given by equation @a) which for certain com- 
binations of “a” and ‘“P’, will yield a higher than first 
order response in the frequency range of interest in 

/xc---x- ,--. 
/ ‘\ /’ 

: 
‘\,. 

I 
I 
\ 
\ 
\ 

FIG. 4. Simplified lumped parameter network equivalent 
circuit of new hot-wire model for TE = constant. 

where 

Thus, 

For an effectively intmite wire, R,, -+ 0~1 and equation 
@a) reduces to 

1 
Z/K = ~ 

z,s+l 
where K = R,, WV 

which is the already well known transfer function of an 
turbulence measurements. infinitely long wire-a single pole. 
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For effectively short wires, R,, is finite. When half 
the heat generated by the wire is lost by conduction to 
the supports, q1 = al in Fig. 2 so that Rcl +R,, = R,, 
= R. The parameters in equation (8a) then become 

I< = R/2 @la) 

Rcht, t2 a=--- 
R 2, 

(Ilb) 

26 = (114 
Substitution of equations (Ilb) and (1%~) in (Ild) 

yields 

tw 

Since Rcl is extremely di~cult to measure directly, 
equation (12) can be used for its indirect measurement 
by finding “,5” and “a” from a frequency response of 
such a wire. These values will also give an indirect 
measure of the corner frequencies of the wire and the 
portion of the end support in question. From equation 
(I I b) foliows 

02 5, 41 -=-=_ 

wn 72 aR 
(13) 

and substitution of this in equation (1 lc) yields, 

(14) 

5. TEST RESULTS 

In order to test the above theory, wires were tested at 
very low overheat ratios. The first significant result of 
the above theory is that the wire approaches a single 
pole as R,, + 00. Such a condition cannot be obtained 
readily with tungsten wires because of their high 
thermal conductivity thus giving effectively low values 
of Rcl. Platinum-iridium is much better in this regard, 
Figs. 5(a)-&) showing a typical set of results with the 
smallest diameter wire commercially available. 

Since only very low overheat ratios were used, the 
result of Fig. S(a) cannot be attributed to a buoyancy 
phenomenon which could perhaps be triggered by the 
pulsating heat input and consequent pulsating wire 
temperature. Also, the observed trends cannot be 
att~but~ to stray inductive effects as the bridge was 
compensated for these and balanced correctiy at all 
times to frequencies above those reported. Because of 
the low overheat ratio, the traditional model for the 
hot wire with constant temperature at its ends predicts 
a single pole system. This is not the case for the result of 
Fig. S(a) either for amplitude or phase. The same wire 

when subjected to an air stream to increase the 
convection loss, which effectively is the same as an 
increase in Rcl, gives almost the correct phase response 
but the amplitude response still differs signilicantly 
from that of a single pole. A difference. remained even 
when the air velocity was increased further. Using the 
much longer wire of Fig. S(c) at high velocity, simu- 
lated the case of a much higher value of R,I and 
within experimental accuracy, a single pole response 
for both amplitude and phase is obtained. It was 
estimated that for this wire less than 5% of the total 
heat input is lost to the supports thus ~o~rming that it 
is effectively an infinitely long wire. 

These test results are, therefore, consistent with the 
new theoretical model proposed in the previous sec- 
tion. They also clearly show that the amplitude alone 
gives a misleading result, at least for this wire material, 
as any differences between it and that of a single pole 
may be argued to be within reasonable experimental 
accuracy. Together with the phase responses a much 
more sensitive test of the influence of the fluctuating 
end condition is obtained. Another case of a low value 
of R,, was obtained with tungsten wire as already 
iIlustrat~ in Fig. 1. 

As a final test, equation (8a) can be litted to the test 
result of Fig. 1, since the heat loss to the ends is of the 
order of 50% ofthe total heat input. Two such attempts 
are shown in Fig. 6. The case of S = a = 1.1 gives a 
reasonable fit to the test result. Substituting these 
values in equation (12) yields RjRcl = 1.35 and equa- 
tions (13) and (14) give w1 = 94Hz and w2 = 115Hz. 
wr is near the wire corner frequency which would 
usually be taken as the frequency at which the 
amplitude has dropped by 3 dB. Since resistance to 
conduction heat transfer in the support is much less 
than that to convection heat transfer from the wire 
(R,, << R,,) the result for w2 indicates that the volume 
of the transition section is larger than that of the wire. 
The result of R/R,r = 1.35 appears a little high, 
however, since the measurements of Champagne et al. 
[3] indicate that at low overheat ratios, the mean 
temperature of the wire ends is very close to that of the 
fluid temperature consequentiy requiring R/R,, to be 
close to unity. 

The second case of 6 = a = 1.15 gives an even better 
fit but gives R/R,, = 1.48. or and o2 are 98 Hz and 
1OOHz respectively. This case is considered to be the 
best approximation with the remaining differences 
between the measured results and those of equation 
@a) being due to the estimate of 50% heat loss to the 
ends to which case equations (1 I)-(14) apply, and 
approximating the transition region by a single pole. 
In view of the rapidly changing geometry this is 
considered to be an oversimplification which can be 
resolved only by the solution of the complete heat- 
transfer equations of this section. Such a study could 
even include the effect of crowding of the heating 
current flux lines. The accuracy of the measured points 
at 2 kHz and above also tends to be low as the signal is 
of similar size to that of the electronic noise. Further- 
more, equation (12) from which R/R,, is obtained is 
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FIG. 5(a). Frequency response of 1Opm x 1.5 mm Pt-Ir wire 
in still air, wire current = 10 mA and constant size test signal. 
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FIG. 5(b). Frequency response of 10pm x 1.5 mm Pt-Ir wire 
for air velocity = 2.3 m/s, wire current = 10 mA and constant 

size test signal. 
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FIG. 5(c). Frequency response of 10pm x 6 mm Pt-Ir wire 
for air velocity = 9 m/s, wire current = 10 mA and constant 

size test signal. 
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Frequency. Hz 

FIG. 6(a). Frequency response of Fig. 1 simulated by aqua- 
tion(8a)for&=a=l.land~~=170Hz. 
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FIG. 6(b). Frequency raponse of Fig. 1 simulated by equa- 
tion @a) for 6 = a = 1.15 and CD, = 170 Hz. 

very sensitive to smail changes in “a” relative to “8’ so 
that the above results for R/R,, are of comparatively 
low accuracy. 

6. CONCLJJSIONS 

Commonly used hot-wires are made of tungsten or 
platinum wire with length/diameter ratios of less than 
600 for which considerable heat conduction to the wire 
supports exists. It has been shown that in such cases 
the wire frequency response will differ significantly 
from that of a single pole even at very low overheat 
ratios. Use of open loop com~n~tion with a single 
zero will not yield a flat frequency response. Only 
approximate compensation will be obtained, the set- 
ting achieved depending on whether a square wave or 
a sinusoid test signal is used. 

A model has been proposed which is consistent with 
measured results and shows that the wire behaves like 
a single pole only when heat losses to its supports are 
small-a reasonable upper limit probably being of the 
order of 5%. The practical implication of this is that 
when using uncompensated wires or ones with open 
loop compensation, it is best to use effectively infinitely 
long wires such as OS-2 l.trn dia. plat~um-i~dium or 

platinum-rhodium wires with a length-to-diameter 
ratio of approximately 600. 

For a wire with a constant end temperature, the 
frequency response to heating current fluctuations is 
similar to velocity or stream temperature fluctuations. 
This will still apply for the new end condition thus 
enabling the latter responses to be inferred from that to 
heating current fluctuations. When using closed loop 
(constant temperature) anemometers, this new end 
condition will not introduce an error but does give new 
insight for design purposes as it effectively introduces 
another pole into the bridge arm confining the wire, 
its holder and connection cable when using wires with 
significant heat losses to the supports. 

For the purpose of describing the effects of the wire 
ends on the wire’s frequency response, the simplified 
model of Fig. 4 is adequate. If phenomena attributable 
to distributed effects are to be investigated, a more 
complex model would be required. Such a model 
would be useful for the study of the wire’s response 
under static relative to dynamic conditions for which 
case the ratio of heat lost by the wire to the fluid to the 
heat lost by end conduction (q,/q2 in Fig. 4) may not 
remain independent of frequency. 
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REPONSE EN FREQUENCE DES ANEMOMETRES A FIL CHAUD 
AUX FLUCTUATIONS DU COURANT DE CHAUFFAGE 

R&nrm&-Des mesures de reponse en frequence par la technique d’injection de courant pour les 
antmometres a fil chaud, a tres faible surchauffe, montre que pour des fils ayant des pertes sensibles 
aux extremites par conduction, on n’obtient pas une reponse a une seule constante de temps. Ceci est 
contraire aux modtles theoriques couramment utilises. On prtsente un nouveau modtle qui simule avec 
succis les caracteristiques mesun% de la rttponse en frequence. On con&t que l’hypothtse habituelie 
dune temperature constante aux extremites du fii, sous des conditions dynamiques, est incorrecte. On 
trouve que des fils chauds avec des pertes par conduction negligeables donnent une reponse a une seule 

constante de temps. 

DER FREQUENZGANG VON DRAHT-ANEMOMETER-SONDEN 
BEI HEIZSTROMSCHWANKUNGEN 

Z~a~~f~ung-Freque~gangmessungen mit Hilfe der Stromeinspeistechnik fiir Hitzdraht- 
anemometer mit kleinen Uberhitzungsverhahnissen zeigen, dal3 das dynamische Verhahen von 
Hitzdrahten mit betrachtlichen Leitungsverlusten an den Enden nicht mit einer einzigen Zeitkonstanten 
beschrieben werden kann. Dies widerspricht den gegenwartig verwendeten theoretischen Modellen. Es 
wird ein neues Model1 vorgestellt, das den gemessenen Frequenzgang gut wiedergibt. Daraus wird der 
SchluB gezogen, daB die traditionefle Annahme einer konstanten Temperatur an den Drahtenden unter 
dynamischen Bedingungen nicht korrekt ist. Hitzdrlhte mit vernachlassigbar kleinen Leitungsverlusten 

an den Enden zeigten das urspriinglich angenommene Verhalten mit einer einzigen Zeitkonstanten. 

qACTOTHAI1 XAPAKTEPMCTMKA RATYMKOB 
TEPMOAHEMOMETPA HPM KOSIEGAHMIIX 

TOKA HAFPEBA 

hlSlOTWUi - M-JMepeHiie SICTOTHLIX XaPtlKTePiiCTMK TepMhHeMOMeTpOB IipEi OWHb HU3KWX 

OTHOJJEHHIIX IIepWp’?Ba ll03BOJlHnO )‘CTBHOBHTb, YTO AJIR npOBOJIOWK TepMOaHeMOMeTpa, BMelOlUHX 

3HWUiTeJIbHbI@ KOHUeBble IlOTepH 3a CYeT T‘.?llAOIYpOBOAHOCTH, HtVlb311 tlOJly’iHTb XapaKTepHClElKy 

C OAHOfi IIOCTORHHOi? BpeMeHH. 3TO IlpOTEiBOpfiWlT lWlOJlb3YeMblM B H~CTORUW BpeMR TeOpeTH- 

WCKWM MOAtVUSM. fifLEAJlOX%tHa HOBaR MOAWlb, C IIOMOiUblO KOTOPOii yCtlt?UlHO MOAWEip)‘MTCR 

E3MepSEMbIe ‘IZiCTOTHble XapaKTep~C~K~. (&SEW BbIBOA 06 O~~~O~HOCT~ TpaA~U~OHHOrO AOIly- 

Illem 0 IlOCTOIHCTBe TeMR‘ZpaTypbK Ha KOHLlaX IIpOBOJiO‘IKEl B iUlHaMA’ieCKOM fXXC5iMe @kTbI 

TepMOaH$MOMeTpa. HatiAt?HO, YTO AJISI IIPOBOAOWK C IIpeHe6peXCHMO MaJIbIMU KOHUeBbIMlU lTOTepRMH 

38 CWT TelSJlOnpOBOAliOCTW MOKHO tIOlIyWiTb HeOdXOAkiMble XapElKTepHCTUKti C OAHOii IlOCTORHHOfi 
BpeMeHW. 


