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THE FREQUENCY RESPONSE OF HOT-WIRE
ANEMOMETER SENSORS TO HEATING
CURRENT FLUCTUATIONS

K. BREMHORST,* L. KREBST and D. B. GILMORE}

(Received 26 April 1976 and in revised form 16 July 1976)

Abstract—Frequency response measurements by the current injection technique of hot-wire anemometers at

very low overheat ratios, show that for wires with substantial end conduction losses, a single time constant

system response is not obtained. This is contrary to currently used theoretical models. A new model is

presented which successfully simulates the measured frequency response characteristics. It is concluded that

the traditional assumption of constancy of temperature at the wire ends under dynamic conditions is

incorrect, Hot-wires with negligible end conduction losses were found to give the anticipated single time
constant system response.

NOMENCLATURE
A, cross-sectional area of hot-wire;
a, constant in equation (8a);

C,, heat capacity of hot-wire;
C,, C3,lumped heat capacity of transition region
and bulk of wire attachment respectively;

d wire diameter;

db,  20log,, (output/output at reference
condition);

F, a function defined by equation (7);

h, instantaneous convection heat-transfer
coefficient;

A, mean convection heat-transfer coefficient;;

K, fluctuation from the mean convection
heat-transfer coefficient, =h—h;

1, instantaneous wire current;

I, mean wire current;

I, fluctuation from mean wire current,
=J-T;

j’ \/ -1 s

K, constant defined by equation (8b)

k, thermal conductivity of hot-wire material ;

L, length of hot-wire;

P, parameter defined by equation {4);

Q, parameter defined by equation {4};

q, heat generated by hot-wire;

q  heat transfer by convection;

i heat transfer by conduction;

g, Or ¢,, heat flow along branches shown in

in Fig. 3;

R, total resistance to heat transfer;

R..,R.;, resistance to heat transfer by conduction
from one body to another;

R.,,R.;, equivalent resistance defined as part
of Fig. 4;

Ry, mean wire resistance at the equilibrium
temperature for zero heating current;
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R,
R},

total wire resistance;

fluctuation of total wire resistance;
instantaneous wire resistivity at equilibrium
temperature, Tg;

mean wire resistivity at equilibrium
temperature, Ty;

rg—Fg;

wire resistivity at a reference temperature;
instantaneous wire resistivity at wire
temperature;

mean wire resistivity at wire temperature;
T Fos

= jo;

wire equilibrium temperature at zero
heating current—at low subsonic speeds this
is virtually identical to the fluid temperature;

T, T,, T, effective temperature of wire,

L
X,

transition region and bulk of end supports or
plated section of wire respectively;

time;

co-ordinate along the wire, x = 0 being the
centre of the wire;

Z,Z,,Z,, impedances.

Greek symbols

a,
1)

6’
1,
T
T,

Ty5T25

¢
Q
w,
Oy,
Wy, W3,

temperature coefficient of resistivity;
absolute magnitude of perturbation in the
convective heat transfer coefficient;
damping coefficient in equation (8a);
absolute magnitude of perturbation in ry;
=3.1416;

absolute magnitude of wire current
perturbation;

time constants of wire and transition
region respectively;

phase angle;

parameter defined by equation (4);
angular frequency;

characteristic or natural angular frequency;
corner (roll-off) frequency of wire and
transition region respectively.
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1. INTRODUCTION

THE RESPONSE characteristics of the small cylindrical
element which is the heart of hot-wire anemometers, are
amongst the most difficult to measure directly. Con-
sequently even now, a full understanding of these
characteristics cannot be claimed. Many of the more
dominant ones are well documented in the literature
such as Hinze [ 1] and Bradshaw [2].

Studies of the response characteristics generally
commence with the partial differential heat balance
equation which accounts for convection, conduction
and storage of heat, radiation and thermoelectric
effects being negligible. No evidence appears to in-
validate this basic equation. The next step involves the
selection of boundary conditions with which a solution
either in closed form or by numerical methods can be
obtained. The most generally used boundary con-
dition is that the temperature of the wire ends equals
that of its supports which in turn equals the wire
equilibrium temperature at zero heating current which
is often equal to the stream temperature. Some exper-
imental evidence has been provided by Champagne
et al. [3] showing that under some conditions, the
temperature of the wire ends is above that of the stream
and that of the major part of its supports. For the
assessment of the fluctuating wire response, it is also
assumed that the temperature of the wire ends remains
constant. This assumption follows from the fact that
the supports are massive compared with the wire.
Solutions for these boundary conditions are presented
in Kronauer [4] and Hinze [1] and show that even
when significant conduction of heat to the end sup-
ports takes place, the frequency response of the wire is
that of a single time constant system—a single pole—
except at high wire temperatures where the wire
response approaches that of a distributed system due
to the high temperature gradient along the wire. The
resultant deviations from a single time constant system
are, however, small and before the development of
closed loop hot-wire anemometer systems, was con-
sidered insufficient to warrant the use of open loop
compensation networks more complex than a single
zero. Direct experimental evidence of this behaviour is
provided by Kidron [ 5] for a tungsten wire operated at
a high wire temperature and low velocity.

Although the majority of hot-wire anemometer
systems are now of the closed loop form which keep the
mean wire temperature constant regardless of velocity,
and hence no longer require the operator to measure
the wire time constant, the frequency response charac-
teristic to heating current fluctuations is still of interest
for design purposes. It is also of vital importance in the
measurement of stream temperature fluctuations when
using constant current hot-wire anemometers. In this
application, the frequency range of the measured
quantity generally exceeds that of the transducer thus
requiring the use of open loop compensation. Match-
ing of the compensation network zero to the pole
representing the wire is generally achieved by the
square wave current injection technique pioneered by
Kovasznay [6]. This method is relatively insensitive to

errors and consequently gives an apparently good
match. Recent attempts by the authors to do this with
a sinusoid instead of a square wave showed that, for
commonly used hot wires even at extremely low
overheat ratios where the wire is no longer a distri-
buted system within achievable measurement ac-
curacy, a zero will not match the “pole” representing
the hot wire. A re-examination of the heat-transfer
characteristics of the wire shows that the assumption
of constant temperature for the wire ends leads to this
dilemma.

2. THEORETICAL RESPONSE WITH WIRE
ENDS AT CONSTANT TEMPERATURE

The partial differential equation expressing the
instantaneous heat balance at any point along the wire
is given by equation (1), where for the operating
conditions of interest in the present work, thermal
radiation, thermoelectric effects and variations in wire
thermal conductivity have been neglected.

I*r,, C,Aodr, 4 hnd(r,—rg) kA,

root 0x*

A root Ot Folt

where r,, is a function of x and ¢ but only the case of h
= constant along the wire is of interest. Considering
the small perturbation response, time dependent com-
ponents can be replaced by a mean component and a
fluctuating one as follows

I=T+r
Fw =Ty +1,

rg="rg+rg
h=h+Hh

where I', rg and h’ are functions of time only but r,, is a
function of x and time. 7, is a function of x alone.
Collecting first order terms gives the small per-
turbation response equation,

I’r, 2IFI _Cdor, N h'nd(F,—Fg)
A A roo Ot ol
hrnd(r,—rg) k,A 0%,
e —re) .
rod root 0x

When h varies with time and rz and I are constant, let
W/h =vysin ot and introducing the following non-
dimensional groups

2 Ahnd B 2 LTy
Prou k, A? (4)
_ wCA?
" PPrya

the solution to equation (3) is given in exact as well as
in symbolic form by Kronauer [4] for the boundary
condition r,, = Oat x = + L/2. Symbolically,
——14P?
R, = —Rg

F sin (ot — ¢) ()
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where R/, is the resultant fluctuation in wire resistance
integrated over the length of the wire and F is a
function of Q and the product PQ. F and ¢ contain the
frequency dependence of R;, and it is easily shown for
commonly used wires at low overheat ratios that a
single pole system results to an accuracy of better than
5%.

The response to stream temperature fluctuations is
obtained by setting I’ and k' equal to zero and taking
rg = nsinwt. Applying the boundary condition r,, = 0
at x = +L/2 results in a solution of equation (3) in
symbolic form,

1+P
R,=2
A\ P

For a wire sensitive only to temperature fluctuations, I
is usually kept very low and 4 is small so that generally
PQ > 1. Kronauer [4] shows that for PQ > 20, F and
¢ are given to within 2.8% and 1.1° respectively by
equations (7)

) Fsin{wt— ¢). 6)

Fe (1 2 ) 1
Ul (eare) |
1+@PQ)
™
- -1
o=t T er)

Thus the response of the wire is again that of a single
pole to within measurable accuracy.

3. APPLICATION OF THEORETICAL RESULTS
TO A WIRE WITH ENDS AT
CONSTANT TEMPERATURE

The solutions given in the previous section all
indicate that the wire responds like a single time
constant system. At high overheat ratios several
doubts arise when using these solutions as h becomes
temperature dependent and, therefore, will vary along
the wire, Also, in view of the experimental evidence of
Champagne et al. [ 3] the ends of the wire can no longer
be assumed to be at the temperature of the fluid.

It is better, therefore, to concentrate on the response
at low wire currents when the wire is operated
essentially as a resistance thermometer. In this case the
solutions of the previous section show that to an
accuracy of better than 1%, the wire can be represented
by a single pole system. Precise measurements to verify
this do not appear to have been reported to date.

Measurements with a DISA 55M20 constant cur-
rent bridge incorporating probe cable compensation
(DISA 9055 M2381) and employing the set-up pro-
cedure as described by Bremhorst and Krebs [8] gave
the result of Fig. 1 for a 5um dia. x 1.5 mm tungsten
wire at a very low overheat ratio. The wire was
soldered directly to its supports which were massive
compared with the wires—certainly more massive
than commercially produced ones. Significant differ-
ences which cannot be explained by experimental error
are noted between this and a single pole system. At the
45° phase lag point the amplitude difference would give
an error of 35%, in spectral measurements.
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Fic. 1. Frequency response of 5 pm x 1.5 mm tungsten wire,
for air velocity = 2.3 m/s, wire current = 8 mA and constant
size test signal.

Finally, the wire’s response to current fluctuations of
the form I'/T = 7 sin wt when k' and rgare zero is given
by the sum of the responses to velocity and tempera-
ture fluctuations, that is, the sum of equations (5) and
{6) but with y = —27/(1+P?) and 5 = 2i7g/(1+ P2).
For a wire operated at low I, as is the case when
measuring temperature fluctuations, P? » 1 so that
the response is closely approximated by that to
temperature fluctuations, that is, by equations (6} and
(7) with the above substitution for n. Again it is a single
pole system response.

4. RE-EXAMINATION OF THEORETICAL MODEL

The assumptions used in the derivation of the basic
heat transfer equation, equation (1), and its per-
turbation form, equation (3), are considered valid and
are consistent with, for example, Davies and Davis [ 7].
However, the form of the measured response of Fig. 1
suggests the interaction of two single pole systems
where the second time constant can be attributed to a
portion of the supports holding the wire. The new
physical model of Fig. 2 is proposed.

The essential difference between this and previously
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FiG. 2. New model of hot-wire anemometer.

used models is that a small transition region has been
included where considerable crowding of the heat flux
lines takes place. This section is not assumed to be at
constant temperature. Figure 3 shows this new model
as a lumped parameter network equivalent circuit for
constant fluid temperature, T;.
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Fic. 3. Lumped parameter network equivalent circuit of new
hot-wire model for Ty = constant.

The end supports of the wire have a considerable
thermal inertia so that T will be essentially constant.
Also, R,s will be very small due to the high con-
ductivity and large cross-section of the end supports so
that a reasonable assumption for most cases of interest
is that Ty = Ty giving the simplified model of Fig. 4,
where

R R
L and Z, =2
T,5+1

and
§ = jw.

For current injection, the ratio T}/q is of interest as
this gives the system transfer function measured when
observing the signal from the hot-wire unit and
comparing it with the forcing function, ¢. This ratio is
the impedance, Z, of the network of Fig. 4 and has the
form given by equation (8a) which for certain com-
binations of “a” and “8”, will yield a higher than first
order response in the frequency range of interest in
turbulence measurements.
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FiG. 4. Simplified lumped parameter network equivalent
circuit of new hot-wire model for Ty = constant.

1
Z/K = asfan+ 8a)
42641
w; W,
where
R, {(R;+R,
- 1(Rey 2) (8b)
(Rel + Rez +Rc1)
Rcl T2
= e = g = 1/ 8¢
Rd+R92 T, T / n ( )
3 - Rel +R22 + Rcl (Sd)
Rcl T, T2
_ (R + R/t + (R +R,y) (3¢)
[(Roy + Ry + R R, 7y /7]
Thus,
R, +R.;+R, 1
T2 _(Ra +K.2+ R, . ©)
Tn Rcl Tl/tn

For an effectively infinite wire, R, —» o0 and equation
{8a} reduces to

Z/K = where K =R, (10)

Ty

which is the already well known transfer function of an
infinitely long wire—a single pole.
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For effectively short wires, R,, is finite. When half
the heat generated by the wire is lost by conduction to
the supports, §, = 4, in Fig.2sothat R, +R,, = R,,
= R. The parameters in equation (8a) then become

K=R2 (11a)
Ryt
= 11b
a R 1, (1)
2R
@l = (11¢)
Rclrifz
R
rl/t2+(l + 1;‘)
20 = el (11d)

2Rclt_l
R Tz

Substitution of equations (11b) and (11c} in (11d)
yields
5 1 + a + ak
22 4 4R,
Since Ry is extremely difficult to measure directly,
equation (12) can be used for its indirect measurement
by finding “4” and “a” from a frequency response of
such a wire. These values will also give an indirect
measure of the corner frequencies of the wire and the
portion of the end support in question. From equation
(11b) follows

(12)

Wy Tn Rcl

—_ = 13
w, 7T, aR (13)
and substitution of this in equation (11c¢) yields,
w; a
— = 14
o, "2 (14)

5. TEST RESULTS

Inorder to test the above theory, wires were tested at
very low overheat ratios. The first significant result of
the above theory is that the wire approaches a single
poleas R,; — 0. Such a condition cannot be obtained
readily with tungsten wires because of their high
thermal conductivity thus giving effectively low values
of R,,. Platinum—iridium is much better in this regard,
Figs. 5{a)—{c) showing a typical set of results with the
smallest diameter wire commercially available.

Since only very low overheat ratios were used, the
result of Fig. 5(a) cannot be attributed to a buoyancy
phenomenon which could perhaps be triggered by the
pulsating heat input and consequent pulsating wire
temperature. Also, the observed trends cannot be
attributed to stray inductive effects as the bridge was
compensated for these and balanced correctly at all
times to frequencies above those reported. Because of
the low overheat ratio, the traditional model for the
hot wire with constant temperature at its ends predicts
a single pole system. This is not the case for the result of
Fig. 5(a) either for amplitude or phase. The same wire

when subjected to an air stream to increase the
convection loss, which effectively is the same as an
increasein R, , gives almost the correct phase response
but the amplitude response still differs significantly
from that of a single pole. A difference remained even
when the air velocity was increased further. Using the
much longer wire of Fig. 5(c) at high velocity, simu-
lated the case of a much higher value of R, and
within experimental accuracy, a single pole response
for both amplitude and phase is obtained. It was
estimated that for this wire less than 5% of the total
heatinput islost to the supports thus confirming that it
is effectively an infinitely long wire.

These test results are, therefore, consistent with the
new theoretical model proposed in the previous sec-
tion. They also clearly show that the amplitude alone
gives a misleading result, at least for this wire material,
as any differences between it and that of a single pole
may be argued to be within reasonable experimental
accuracy. Together with the phase responses a much
more sensitive test of the influence of the fluctuating
end condition is obtained. Another case of a low value
of R,; was obtained with tungsten wire as already
illustrated in Fig. 1.

As a final test, equation (8a) can be fitted to the test
result of Fig. 1, since the heat loss to the ends is of the
order of 509 of the total heat input. Two such attempts
are shown in Fig. 6. The case of § =a = 1.1 gives a
reasonable fit to the test result. Substituting these
values in equation (12) yields R/R,; = 1.35 and equa-
tions (13) and (14) give @, = 94Hz and @, = 115Hz
, is near the wire corner frequency which would
usually be taken as the frequency at which the
amplitude has dropped by 3 dB. Since resistance to
conduction heat transfer in the support is much less
than that to convection heat transfer from the wire
(R,> « R,,) the result for w, indicates that the volume
of the transition section is larger than that of the wire.
The result of R/R, = 1.35 appears a little high,
however, since the measurements of Champagne er al.
[3] indicate that at low overheat ratios, the mean
temperature of the wire ends is very close to that of the
fluid temperature consequently requiring R/R_; to be
close to unity.

The second case of § = a = 1.15 gives an even better
fit but gives R/R,, = 148. v, and w, are 98 Hz and
100 Hz respectively. This case is considered to be the
best approximation with the remaining differences
between the measured results and those of equation
{8a) being due to the estimate of 50%, heat loss to the
ends to which case equations (11)-(14) apply, and
approximating the transition region by a single pole.
In view of the rapidly changing geometry this is
considered to be an oversimplification which can be
resolved only by the solution of the complete heat-
transfer equations of this section. Such a study could
even include the effect of crowding of the heating
current flux lines. The accuracy of the measured points
at 2 kHz and above also tends to be low as the signal is
of similar size to that of the electronic noise. Further-
more, equation (12) from which R/R_; is obtained is
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B3 ”

very sensitive to small changes in “g” relative to “8” so
that the above results for R/R,; are of comparatively
low accuracy.

6. CONCLUSIONS

Commonly used hot-wires are made of tungsten or
platinum wire with length/diameter ratios of less than
600 for which considerable heat conduction to the wire
supports exists. It has been shown that in such cases
the wire frequency response will differ significantly
from that of a single pole even at very low overheat
ratios. Use of open loop compensation with a single
zero will not yield a flat frequency response. Only
approximate compensation will be obtained, the set-
ting achieved depending on whether a square wave or
a sinusoid test signal is used.

A model has been proposed which is consistent with
measured results and shows that the wire behaves like
a single pole only when heat losses to its supports are
small—a reasonable upper limit probably being of the
order of 5%. The practical implication of this is that
when using uncompensated wires or ones with open
loop compensation, it is best to use effectively infinitely
long wires such as 0.5-2 pm dia. platinum-iridium or

platinum-rhodium wires with a length-to-diameter
ratio of approximately 600.

For a wire with a constant end temperature, the
frequency response to heating current fluctuations is
similar to velocity or stream temperature fluctuations.
This will still apply for the new end condition thus
enabling the latter responses to beinferred from that to
heating current fluctuations. When using closed loop
(constant temperature) anemometers, this new end
condition will not introduce an error but does give new
insight for design purposes as it effectively introduces
another pole into the bridge arm containing the wire,
its holder and connection cable when using wires with
significant heat losses to the supports.

For the purpose of describing the effects of the wire
ends on the wire’s frequency response, the simplified
model of Fig. 4 is adequate. If phenomena attributable
to distributed effects are to be investigated, a more
complex model would be required. Such a model
would be useful for the study of the wire’s response
under static relative to dynamic conditions for which
case the ratio of heat lost by the wire to the fluid to the
heat lost by end conduction (g,/g, in Fig. 4) may not
remain independent of frequency.



322 K. BREMHORST, L. KREBS and D. B. GILMORE

Acknowledgements —The authors are most grateful for assis-
tance received to make this work possible—K. Bremhorst, an
Alexander von Humboldt Fellowship; L. Krebs, a Research
Fellowship from the Department of Mechanical Engineering,
University of Queensland; and D. B. Gilmore, a CSIRO
Scholarship. The extended loan of the hot-wire anemometer
system and additional assistance for L. Krebs by the Gesell-
schaft fur Kernforschung is also gratefully acknowledged.

REFERENCES
1. J. O. Hinze, Turbulence. Chapter 2. McGraw-Hill, New
York (1975).
2. P. Bradshaw, An Introduction to Turbulence and its
Measurement. Pergamon Press, Oxford (1971).
3. . H. Champagne, C. A. Sleicher and O. H. Wehrmann,

Turbulence measurements with inclined hot wires: Part 1,
J. Fluid Mech. 28, 153175, (1967).

. R. E.Kronauer, Survey of hot-wire theory and techniques,

Pratt and Whitney Research Report No. 137, Harvard
University (1953).

. 1. Kidron, Measurement of the transfer function of hot-

wire and hot-film turbulence transducers, IEEE Trans.
Instrum. Measmt, IM-15(3), 76-80 (1566).

. L. Kovasznay, Development of turbulence measuring

equipment, NACA Report 1209 (1951).

. P. O. A. L. Davies and M. R. Davis, The hot-wire

anemometer, Institute of Sound and Vibration Research,
Southampton University, Report No. 155 (October 1966).

. K. Bremhorst and L. Krebs, Reconsideration of constant

current hot-wire anemometers for the measurement of
fluid temperature fluctuations, J. Phys, E: Sci. Instrum. 9,
804806 (1976).

REPONSE EN FREQUENCE DES ANEMOMETRES A FIL CHAUD
AUX FLUCTUATIONS DU COURANT DE CHAUFFAGE

Résumé-—Des mesures de réponse en fréquence par la technique d'injection de courant pour les
anémometres a fil chaud, a trés faible surchauffe, montre que pour des fils ayant des pertes sensibles
aux extrémités par conduction, on n’obtient pas une réponse a une seule constante de temps. Ceci est
contraire aux modeéles théoriques couramment utilisés. On présente un nouveau modéle qui simule avec
succés les caractéristiques mesurées de la réponse en fréquence. On conclut que hypothése habituelle
d’une température constante aux extrémités du fil, sous des conditions dynamiques, est incorrecte. On
trouve que des fils chauds avec des pertes par conduction négligeables donnent une réponse a une seule
constante de temps.

DER FREQUENZGANG VON DRAHT-ANEMOMETER-SONDEN
BEI HEIZSTROMSCHWANKUNGEN

Zusammenfassung— Frequenzgangmessungen mit Hilfe der Stromeinspeistechnik fiir Hitzdraht-
anemometer mit kleinen Uberhitzungsverhiltnissen zeigen, daB das dynamische Verhalten von
Hitzdrihten mit betrdchtlichen Leitungsverlusten an den Enden nicht mit einer einzigen Zeitkonstanten
beschrieben werden kann, Dies widerspricht den gegenwirtig verwendeten theoretischen Modellen, Es
wird ein neues Modell vorgestellt, das den gemessenen Frequenzgang gut wiedergibt. Daraus wird der
SchluB gezogen, daB die traditionelle Annahme einer konstanten Temperatur an den Drahtenden unter
dynamischen Bedingungen nicht korrekt ist. Hitzdréhte mit vernachlédssigbar kleinen Leitungsverlusten
an den Enden zeigten das urspriinglich angenommene Verhalten mit einer einzigen Zeitkonstanten.

YACTOTHASA XAPAKTEPUCTUKA JATUUMKOB
TEPMOAHEMOMETPA MPH KOJNEBAHUAX
TOKA HATPEBA

AHBOTAUHA — VI3MEpeHie HacTOTHBLIX XApakTEePUCTHK TEPMOAHEMOMETPOB IIDH OYEHb HH3KHX
OTHOILEHHSAX eperpesa no3BoanI0 YCTAHOBUTD, HTO AJIA IPOBOJIOYEK TEPMOAHEMOMETDA, HMEFOLLHAX
3HAYMTENbHbLIE KOHLEBbIE MOTEPH 33 CYET TEILIONPOBOJHOCTH, HENB3sl NOJYYHTH XapaKTEPUCTHKY
C OFHOM NOCTOAHHOM BPEMEHH. DTO UPOTHBOPEYHT MCUOJIB3YEMbIM B HACTOSIIEE BPEMA TCOPETH-
yeckuM MogensM. [lpemiokeHa HOBas MOJENb, ¢ TOMOWILK KOTOPOH YCHEHIHO MOICIHDYHOTCH
H3MeEpSeMbie YacTOTHEIC XapakTepucTHki. Caenad BeiBox 06 OWMGOYHOCTH TPaAHUMOHHOIO AONY-
INEHHA O IIOCTOMHCTBE TEMOEPaTypsl Ha KOHUAX NPOBOJIOYKM B OHHAMMYECKOM pexume paborsl
TepmoansmoMeTpa. Halineno, 4to U1 npoBosIoUex ¢ NpeHeGPeKUMO MalbIMM KOHLEBbIMH HOTEPAMH
3a CYeT TEIUIONPOBOIHOCTH MOXHO MOJIYYHTh HEOOXOAMMBIE XaPAKTEPUCTHKH C ONHOA HOCTOAHHOM
BPEMEHH.



